Baom LePage Professor STATSTICS AND PROBABILIT WWW.Stt.msu.Gdu/~lepage click on STr200 Sp09 Lecture Outline, 3-27-09 and 3-30-09. See pp. 436-444.



# OIL DRILLING EXAMPLE

$$P(oil) = 0.3$$

#### Cost to drill 130 Reward for oil 400



A random variable is just a **numerical function** over the outcomes of a probability experiment.<sup>3</sup>

# EXPEGIATON

#### **Definition of E X**

E X = sum of value times probability x p(x).

Key properties E(a X + b) = a E(X) + bE(X + Y) = E(X) + E(Y) (always, if such exist)

a. E(sum of 13 dice) = 13 E(one die) = 13(3.5).
b. E(0.82 Ford US + Ford Germany - 20M) = 0.82 E(Ford US) + E(Ford Germany) - 20M regardless of any possible dependence.

|          | probability      | product        | (3-15)<br>of text     |
|----------|------------------|----------------|-----------------------|
| 23       | 2/36             | 2/36<br>6/36   |                       |
| 4<br>5   | 3/36<br>4/36     | 12/36<br>20/36 | I LUULAU J<br>IS IUSt |
| 6<br>7   | 5/36             | 30/36          | imice                 |
| 8        | 5/36             | 40/36          | the 3.5               |
| 9<br>10  | 4/36<br>3/36     | 36/36<br>30/36 |                       |
| 11<br>12 | 2/36<br>1/36     | 22/36<br>12/36 | E(total)              |
| sum      | $\frac{1750}{1}$ | 252/36 = 7     | 5                     |

#### (3-17 of text)

| hoge/month        | 1 1 • 1 • 4 | 1       |   |
|-------------------|-------------|---------|---|
|                   | probability | product |   |
| 2                 | 0.2         | 0.4     |   |
| 3                 | 0.2         | 0.6     |   |
| 4                 | 0.3         | 1.2     |   |
| 5                 | 0.1         | 0.5     |   |
| 6                 | 0.1         | 0.6     |   |
| 7                 | 0.05        | 0.35    |   |
| 8                 | 0.05        | 0.4     |   |
| total             | 1           | 4.05    |   |
| Chumban af haate  | thic manth  |         |   |
| rliningi ai narry |             |         | 6 |

# OIL DRILLING EXAMPLE

$$P(oil) = 0.3$$

#### Cost to drill 130 Reward for oil 400



A random variable is just a **numerical function** over the outcomes of a probability experiment.<sup>7</sup>

**EXPECTED IN THE ONE OF A Second Sec** 



net return from policy"just drill." -130 + 400 = 270drill oil drill no-oil -130 + 0 = -130

E(X) = -10

## OIL EXAMPLE WITH A "TEST FOR OIL"

"costs" TEST 20 DRILL 130 OIL 400 A test costing 20 is available. This test has: P(test + | oil) = 0.9P(test + | no-oil) = 0.4.

9



Is it worth 20 to test first?

oil = -20 - 130 + 400 = 2500.27 67.5 - 0.6 oil = -20 - 0 + 0 = -20.03 - 42.0 no oil+ = -20 - 130 + 0 = -150.28 - 8.4 no oil- = -20 - 0 + 0 = -20.42 16.5 total 1.00 the test is + E(NET) = .27 (250) - .03 (20) - .28 (150) - .42 (20)= 16.5 (for the "test first" policy). This average return is much preferred over the E(NET) = -10 of the "just drill" policy. 10

| Maria                                                 |                    |             |                                   | als/month                               | (3-17)         |  |  |
|-------------------------------------------------------|--------------------|-------------|-----------------------------------|-----------------------------------------|----------------|--|--|
| X                                                     | p(x)               | x p(x)      | $x^2 p(x)$                        | $(x-4.05)^2 p(x)$                       | ortext         |  |  |
| 2                                                     | 0.2                | 0.4         | 0.8                               | 0.8405                                  |                |  |  |
| 3                                                     | 0.2                | 0.6         | 1.8                               | 0.2205                                  |                |  |  |
| 4                                                     | 0.3                | 1.2         | 4.8                               | 0.0005                                  |                |  |  |
| 5                                                     | 0.1                | 0.5         | 2.5                               | 0.09025                                 |                |  |  |
| 6                                                     | 0.1                | 0.6         | 3.6                               | 0.38025                                 |                |  |  |
| 7                                                     | 0.05               | 0.35        | 2.45                              | 0.435125                                |                |  |  |
| 8                                                     | 0.05               | 0.4         | 3.2                               | 0.780125                                |                |  |  |
| total                                                 | 1.00               | 4.05        | 19.15                             | 2.7475                                  |                |  |  |
| quanti<br>terminolo                                   | i <b>ty</b><br>Dgy | E X<br>mean | E X <sup>2</sup><br>mean of squar | tes $E(X - EX)^2$<br>variance = mean of | 2<br>of sq dev |  |  |
| s.d. = $root(2.7474) = root(19.15 - 4.05^2) = 1.6576$ |                    |             |                                   |                                         |                |  |  |

 $Var(X) = {}^{def} E (X - E X)^2 = {}^{comp} E (X^2) - (E X)^2$ i.e. Var(X) is the expected square deviation of r.v. X from its own expectation. Caution: The computing formula (right above), although perfectly accurate mathematically, is sensitive to rounding errors. **Key properties:**  $Var(a X + b) = a^2 Var(X)$  (b has no effect). sd(a X + b) = lal sd(X).VAR(X + Y) = Var(X) + VAR(Y) if X ind of Y. 12



**If random variables X, Y are INDEPENDENT** 

E(X Y) = (E X) (E Y) echoing the above.

Var(X + Y) = Var(X) + Var(Y).

# PRICE RELATIVES

Venture one returns random variable X per \$1 investment. This X is termed the "price relative." This random X may in turn be reinvested in venture two which returns random random variable Y per \$1 investment. The return from \$1 invested at the outset is the product random variable XY.

**EXPECTED RETURN** If INDEPENDENT, E(X Y) = (E X) (E Y). 14

# PARADOX OF GROWTH

#### **EXAMPLE:**



- x p(x) x p(x) 0.8 0.3 0.24
- 1.2 0.5 0.60
- 1.5 0.2 <u>0.30</u> E(X) = 1.14

**WEARER 14% PER PERIOD** BUT YOU WILL NOT EARN 14%. Simply put, the average is not a reliable guide to real returns in the case of exponential growth. <sup>15</sup>

## EXPECTATION GOVERNS SUMS it sums are in the exponent



**EXAMPLE:** 

 $p(x) Log_{e}[x] p(x)$ X -0.029073 0.8 0.3 1.2 0.5 0.039591 1.5 0.2 0.035218  $E Log_{e}[X] = 0.105311$  $e^{0.105311..} = 1.11106...$ 

With INDEPENDENT [plays] your RANDOM return will compound at 11.1% not 14%. (more about this later in the course)



you can see that 14% exceeds reality

POISSON DVBrnIng  $p(x) = e^{-mean} mean^{x} / x!$ for x = 0, 1, 2, ...ad infinitum

POISSOM first best thing: THE FIRST BEST THING **ABOUT THE POISSON IS** THAT THE MEAN ALONE TELLS US THE ENTIRE **DISTRIBUTION! note: Poisson sd = root(mean)** 

#### Poisson Cookies 400 raisins 144 COOKIES mix well

### E X = $400/144 \sim 2.78$ raisins per cookie sd = root(mean) = 1.67(for Poisson)

POISSON GOOKIES e.g. X = number of raisins in MY cookie. Batter has 400 raisins and makes 144 cookies.  $E X = 400/144 \sim 2.78$  per cookie  $p(x) = e^{-mean} mean^{x} / x!$ e.g.  $p(2) = e^{-2.78} 2.78^2 / 2! \sim 0.24$ (around 24% of cookies have 2 raisins)

#### POISSON SOCIO DOST THING THE SECOND BEST THING ABOUT THE POISSON IS THAT FOR A MEAN AS SMALL AS 3 THE NORMAL APPROXIMATION WORKS WELL.



## e.g. X = number of times ace of spades turns up in 104 independent tries (i.e. from full deck) X~ Poisson with mean 2 $p(x) = e^{-mean} mean^{x} / x!, x=0..$ $p(3) = e^{-2} 2^3 / 3! \sim 0.182205$ 23

Poisson in Risk AVERAGE 127.8 ACCIDENTS PER MOL E X = 127.8 accidents If Poisson then sd = root(127.8) =11.3049 and the approx dist is:



mean 127.8 accidents

IJŔŔIJ e.g. X = number of times ace of spades turns up in 104 deals of 1 card from a shuffled full deck. Binomial (n=104, p = 1/52)  $p(x) = nCx^* p^x q^{n-x}, n = 0$  to n.  $p(3) = ((104!)/(3!\ 101!))\ (1/52)^3(51/52)^{49} \sim 0.182205$ Agrees with Poisson approximation of binomial! 25

# Normal Approx of Binomal







