BaOM LoPag

 Probeson MWMSthmenodit/ ~lenacie Clichon il200 Sill

Lecture Outline, 3-27-09 and 3-30-09. See pp. 436-444.

RANOMOMARMBUS Chapter 16

DOALSOOICd probability

$\mathrm{P}(\mathrm{oil})=0.3$

Cost to drill 130 Reward for oil 400

A random variable is just a numerical function over the outcomes of a probability experiment.

Definition of $\mathbf{E} \mathbf{X}$
$\mathrm{E} X=$ sum of value times probability $\mathrm{x} p(\mathrm{x})$.

Key properties

$\mathrm{E}(\mathrm{aX}+\mathrm{b})=\mathrm{aE}(\mathrm{X})+\mathrm{b}$
$\mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})$ (always, if such exist)
a. $\mathrm{E}($ sum of 13 dice $)=13 \mathrm{E}($ one die $)=13(3.5)$. b. $\mathrm{E}(0.82$ Ford US + Ford Germany - 20M)
$=0.82 \mathrm{E}$ (Ford US) +E (Ford Germany) -20 M regardless of any possible dependence.
[0] 0 $1 / 36 \quad 2 / 36$ of text 2 $1 / 36$
$2 / 36$ 6/36 12/36 E[LDDI] 20/36 [8Just 30/36 CWICE
3/36
4/36
5/36
6/36
5/36
4/36
3/36
42/36

40/36
36/36 (10リ) 10 30/36 ©DO Clib
11
2/36
12
sum
$\frac{1 / 36}{1}$ $\underline{252 / 36=7} \stackrel{\text { E(total) }}{22 / 36}$

(3-17 of text)

Doils imant
probability
0.2
0.2
0.3
0.1
0.1
0.05
0.05

1
product
0.4
0.6
1.2
0.5
0.6
0.35
0.4
4.05

E(numer of honts this mintid)

$\mathrm{P}(\mathrm{oil})=0.3$

Cost to drill 130 Reward for oil 400

A random variable is just a numerical function over the outcomes of a probability experiment.

net return from policy"just drill."
$-130+400=270$
drill oil
drill no-oil
0.7
no oil $\longrightarrow-130+0=-130$

$$
E(X)=-10
$$

"costs"
TEST 20
DRILL 130
OIL 400

A test costing 20 is available. This test has:

$$
\begin{aligned}
& \mathrm{P}(\text { test }+\mid \text { oil })=0.9 \\
& \mathrm{P}(\text { test }+\mid \text { no-oil })=0.4
\end{aligned}
$$

Is it worth 20 to test first?

$$
\text { oil+ }=-20-130+400=250 \quad 0.27
$$

$$
\text { oil- }=-20-0+0=-20
$$

$$
.03
$$

$$
-0.6
$$

$$
\text { no oil+ }=-20-130+0=-150 \quad .28-42.0
$$

Wo dosc

$$
\mathrm{E}(\mathrm{NET})=.27(250)-.03(20)-.28(150)-.42(20)
$$

$$
=16.5 \text { (for the "test first" policy). }
$$

This average return is much preferred over the $E($ NET $)=\mathbf{- 1 0}$ of the "just drill" policy.

0.8405
$3 \quad 0.2$
0.6
1.8
0.2205
$4 \quad 0.3$
1.2
4.8
0.0005

5
0.1
0.5
2.5
0.09025

6
0.6
3.6
0.38025
$\begin{array}{ll}7 & 0.05\end{array}$
0.35
2.45
0.435125
$\begin{array}{lllll}8 & 0.05 & 0.4 & 3.2\end{array}$
0.780125
$\begin{array}{llllll}\text { total } & 1.00 & 4.05 & 19.15 & 2.7475\end{array}$
quantity
EX EX
E (X - E X $)^{2}$ mean mean of squares variance $=$ mean of sq dev
s.d. $=\operatorname{root}(2.7474)=\operatorname{root}\left(19.15-4.05^{2}\right)=1.6576$

$\operatorname{Var}(\mathbf{X})=^{\operatorname{def}} \mathrm{E}(\mathrm{X}-\mathrm{E} \mathrm{X})^{2}=^{\text {comp }} \mathrm{E}\left(\mathrm{X}^{2}\right)-(\mathrm{EX})^{2}$
i.e. $\operatorname{Var}(\mathrm{X})$ is the expected square deviation of r.v. X from its own expectation.
Caution: The computing formula (right above), although perfectly accurate mathematically, is sensitive to rounding errors.
Key properties:
$\operatorname{Var}(\mathbf{a} \mathbf{X}+\mathbf{b})=\mathbf{a}^{2} \operatorname{Var}(\mathbf{X})$ (b has no effect). $\operatorname{sd}(\mathbf{a} \mathbf{X}+\mathbf{b})=$ lal $\operatorname{sd}(\mathbf{X})$. $\operatorname{VAR}(X+Y)=\operatorname{Var}(X)+\operatorname{VAR}(\mathbf{Y})$ if \mathbf{X} ind of Y.

Random variables \mathbf{X}, Y are INDEPENDENT if $p(x, y)=p(x) p(y)$ for all possible values x, y.

If random variables X, Y are INDEPENDENT
$E(X Y)=(E X)(E Y)$ echoing the above.
$\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.

Venture one returns random variable X per $\$ 1$ investment. This X is termed the "price relative." This random X may in turn be reinvested in venture two which returns random random variable Y per $\$ 1$ investment. The return from $\$ 1$ invested at the outset is the product random variable $X Y$.

If INDEPENDENT, E (X Y) = (E X) (E Y).

EXAMPLE:
$\mathbf{x} \quad \mathbf{p}(\mathbf{x}) \quad \mathbf{x p}(\mathbf{x})$
$\begin{array}{lll}0.8 & 0.3 & 0.24\end{array}$
$1.20 .5 \quad 0.60$
$1.5 \quad 0.2 \quad 0.30$
$\mathrm{E}(\mathbf{X})=1.14$

BUT YOU WILL NOT EARN 14\%. Simply put, the average is not a reliable guide to real returns in the case of exponential growth.
FTPECTITIDN IOVBMDS SOMAS
Tut sums are in ino ounonems
EXAMPLE: $\quad \mathbf{x}(x) \quad \log _{\mathrm{e}}[\mathbf{x}] \mathbf{p}(\mathbf{x})$
$\begin{array}{lll}0.8 & 0.3 & -0.029073\end{array}$
$\$ 1 \square \mathrm{X}$ $\begin{array}{llr}1.2 & 0.5 & 0.039591 \\ 1.5 & 0.2 \\ & \underline{0.035218} \\ & \mathrm{E} \log _{\mathrm{e}}[\mathrm{X}]= & \mathbf{0 . 1 0 5 3 1 1}\end{array}$ $\mathbf{e}^{\mathbf{0 . 1 0 5 3 1 1 . .}} \leftrightarrows 1.11106$.
With INDEPENDENT plays your RANDOM return will compound at 11.1% not 14%.
(more about this later in the course)

COMPRBIME LTEA T WITH THRE RANDOM EDOLITONE

youranceo that ITH cuced rialioy

$$
\begin{aligned}
& \text { P0 Dssso }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HOVTETMODTO! } \\
& \text { BCDMDUR 0U }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=\mathrm{e}^{\text {-mean }} \text { mean }^{\mathrm{x}} / \mathrm{x} \text { ! } \\
& \text { for } \mathrm{x}=0,1,2 \text {, ..ad infinitum }
\end{aligned}
$$

 THE FIRST BEST THING ABOUT THE POISSON IS THAT THE MEAN ALONE TELLS US THE ENTIRE DISTRIBUTION! note: Poisson sd = root(mean)

PTOLSSMLI FODLu/BS CMOTVK VMOUC

$E X=400 / 144 \sim 2.78$ raisins per cookie sd $=\operatorname{root}($ mean $)=1.67$ (for Poisson)

e.g. $X=$ number of raisins in MY cookie. Batter has 400 raisins and makes 144 cookies.

E $\mathrm{X}=400 / 144 \sim 2.78$ per cookie

$p(x)=e^{-m e a n}$ mean ${ }^{x} / x$!
e.g. $\mathrm{p}(2)=\mathrm{e}^{-2.78} 2.78^{2} / 2!\sim 0.24$
(around 24% of cookies have 2 raisins)

POISSOLD
 SBGOTMC [DBSU MTMTMQ THE SECOND BEST THING ABOUT THE POISSON IS THAT FOR A MEAN AS SMALL AS 3 THE NORMAL APPROXIMATION WORKS WELL.

mean 2.78

e.g. $X=$ number of times ace of spades turns up in 104 independent tries (i.e. from full deck) $X \sim$ Poisson with mean 2 $p(x)=e^{-m e a n} m^{x} a^{x} / x!, x=0 .$.

$$
\mathrm{p}(3)=\mathrm{e}^{-2} 2^{3} / 3!\sim 0.182205
$$

e.g. $X=$ number of times ace of spades turns up in 104 deals of 1 card from a shuffled full deck.
Binomial ($\mathrm{n}=104, \mathrm{p}=1 / 52$)
$\mathrm{p}(\mathrm{x})=\mathrm{nCx}^{*} \mathrm{p}^{\mathrm{x}} \mathrm{q}^{\mathrm{n}-\mathrm{x}}, \mathrm{n}=0$ to n . $p(3)=((104!) /(3!101!))(1 / 52)^{3}(51 / 52)^{49} \sim 0.182205$ Agrees with Poisson approximation of binomial!

